M-GAP CONJECTURE AND m-NORMAL THEORIES

BY

LUDOMIR NEWELSKI*

Mathematical Institute, University of Wroclaw
pl.Grunwaldzki 2/4, 50-384 Wroclaw, Poland
e-mail: newelski@math.uni.wroc.pl
and
Mathematical Institute of the Polish Academy of Sciences

ABSTRACT

We find a small weakly minimal theory with an isolated weakly minimal type of \mathcal{M} -rank ∞ and an isolated weakly minimal type of arbitrarily large finite \mathcal{M} -rank. These examples lead to the notion of an m-normal theory. We prove the \mathcal{M} -gap conjecture for m-normal T. In superstable theories with few countable models we characterize traces of complete types as traces of some formulas. We prove that a 1-based theory with few countable models is m-normal. We investigate generic subgroups of small superstable groups. We compare the notions of independence induced by measure (μ -independence) and category (m-independence).

0. Introduction

Throughout, unless we say otherwise, T is a small stable theory in a language L, and we work within a monster model $\mathfrak{C} = \mathfrak{C}^{eq}$ of T. The main feature that distinguishes small superstable theories from ω -stable ones is the presence of complete types over finite sets, with infinite multiplicity. Indeed, [M, A.16] proves that a small superstable theory T is ω -stable iff for every finite set $A \subset \mathfrak{C}$ and $p \in S(A)$, p has finite multiplicity, that is the set of stationarizations of p (over acl(A) or over \mathfrak{C}) is finite. Hence, after Vaught's conjecture for ω -stable theories was proved [SHM], investigation of the ways in which multiplicity of p may be infinite

^{*} Research supported by KBN grant 2 P03A 006 09. Received October 6, 1996 and in revised form February 19, 1997

seems a necessary step towards a proof of Vaught's conjecture for superstable theories. This was the motivation for a number of papers that I have written in recent years [Ne1, Ne3, Ne4, Ne5, Ne7]. When speaking about stationarizations of types, we use the following notions.

If s(x) is a (partial) type over \mathfrak{C} , then [s] is the class of types over \mathfrak{C} , containing s. Let $A \subset \mathfrak{C}$ be finite. So sets of the form $S(A) \cap [\varphi]$, where $\varphi(x)$ is a formula with parameters from A, are a basis of the topology on S(A). We identify strong types over A with types in S(acl(A)).

The trace of s over A is the set $\operatorname{Tr}_A(s) = \{p(x) \in S(acl(A)) \colon p(x) \cup s(x) \text{ is consistent}\}$. $\operatorname{Tr}_A(a/B)$ denotes $\operatorname{Tr}_A(tp(a/B))$ and $\operatorname{Tr}(s)$ denotes $\operatorname{Tr}_\emptyset(s)$. In particular, if $p \in S(A)$ then $\operatorname{Tr}_A(p)$ is the set of stationarizations of p over A. When $A \subset B$, $S_{p,nf}(B)$ denotes the set of non-forking extensions of p in S(B). Notice that $\operatorname{Tr}_A(s)$ is a closed subset of S(acl(A)). Hence for $p \in S(A)$ it is reasonable to investigate the 'topological shape' of $\operatorname{Tr}_A(p)$, rather than merely count the number of elements of it. The first result in this direction [Ne1] states that

(*) if T has few (that is $< 2^{\aleph_0}$) countable models and $p \in S(A)$ is weakly minimal then either $\text{Tr}_A(p)$ is finite or $\text{Tr}_A(p)$ is open (that is, p is isolated).

This fact (called Saffe's condition) was decisive in the proof of Vaught's conjecture for weakly minimal theories [Bu1]. Saffe's condition fails in general, for arbitrary p, at least when stated in the above way. So in order to measure the size of the set of stationarizations of $p \in S(A)$, I introduced a multiplicity rank \mathcal{M} defined by the following conditions.

- (1) $\mathcal{M}(a/A) > 0$.
- (2) $\mathcal{M}(a/A) \geq \alpha + 1$ iff for some finite $B \supset A$ with $a \downarrow B(A)$, $\mathcal{M}(a/B) \geq \alpha$ and $\operatorname{Tr}_A(a/B)$ is nowhere dense in $\operatorname{Tr}_A(a/A)$.
- (3) $\mathcal{M}(a/A) \geq \delta$ for limit δ iff $\mathcal{M}(a/A) \geq \alpha$ for every $\alpha < \delta$.

Regarding this definition notice that for any $A \subseteq B \subseteq \mathfrak{C}$ and $a \in \mathfrak{C}$ the following conditions are equivalent.

- $\operatorname{Tr}_A(a/B)$ is nowhere dense in $\operatorname{Tr}_A(a/A)$.
- $\operatorname{Tr}_A(a/B)$ is meager in $\operatorname{Tr}_A(a/A)$.
- $\operatorname{Tr}_A(a/B)$ has empty interior in $\operatorname{Tr}_A(a/A)$.
- $\operatorname{Tr}_A(a/B)$ is not open in $\operatorname{Tr}_A(a/A)$.

We see that for $a \in \mathfrak{C}$, $\mathcal{M}(a/A)$ depends only on tp(a/A), so for $p \in S(A)$ we can define $\mathcal{M}(p)$ as $\mathcal{M}(a/A)$ for any a realizing p. $\mathcal{M}(a)$ denotes $\mathcal{M}(a/\emptyset)$.

We say that T is m-stable if $\mathcal{M}(p) < \infty$ for any p (over a finite set). In [Ne4, Ne7] it is proved that if T is superstable and has few countable models, then $\mathcal{M}(p)$ is finite for any p (over a finite set). On the other hand, in a small superstable T, using \mathcal{M} -rank we can produce certain locally modular types (called meager types) in a mechanical way, just like U-rank yields regular types (see [Ne4, Ne5]). Unfortunately, there are no examples of a type p in a small T with $\omega \leq \mathcal{M}(p) < \infty$. In [Ne7] I formulated the following conjecture.

 \mathcal{M} -GAP CONJECTURE: In a small superstable T there are no p with $\omega \leq \mathcal{M}(p) < \infty$.

Were this conjecture true, a large part of [Ne5] would be redundant, since it deals with types of infinite \mathcal{M} -rank. The status of this conjecture is unclear even in the simplest case of a weakly minimal T. This is the main motivation for the present paper.

Below we construct small weakly minimal groups with an isolated generic type of arbitrarily large finite \mathcal{M} -rank, and of \mathcal{M} -rank ∞ . The next sections are devoted to explaining why finding a counterexample to the \mathcal{M} -gap conjecture may be hard. Specifically, the examples below are m-normal (for definition see the end of this section). We prove that the \mathcal{M} -gap conjecture is true for m-normal theories. Also we study local properties of \mathcal{M} -rank and m-independence (defined below), and investigate generic subgroups of type-definable groups. We prove that if T has few countable models then traces of complete types are traces of some formulas. As a consequence we get that a 1-based theory with few countable models is m-normal. In the last section we discuss the properties of the set of generic types of a group G; also we comment there on a notion of independence induced by measure and compare it with the notion of m-independence defined below (induced by category).

The notion of multiplical independence (m-independence, for short) is defined in terms of traces of types; we denote it by m . It refines (for small stable T) the notion of independence. We say that

a is **m-independent** from b over c (symbolically: $a \stackrel{\text{"}}{\downarrow} b(c)$) if $a \downarrow b(c)$ and $\text{Tr}_c(a/bc)$ is open in $\text{Tr}_c(a/c)$.

Below we collect the basic properties of m-independence (the proofs may be found in [Ne3, Ne5]).

LEMMA 0.1:

(1) (symmetry) a b(A) implies b a(A).

- (2) (transitivity) $ab \ \ c(A)$ iff $a \ \ c(Ab)$ and $b \ \ c(A)$.
- (3) $\mathcal{M}(a/A) \leq \mathcal{M}(ab/A) \leq \mathcal{M}(a/Ab) \oplus \mathcal{M}(b/A)$.
- (4) If $a \downarrow b(A)$ then $\mathcal{M}(a/Ab) + \mathcal{M}(b/A) \leq \mathcal{M}(ab/A)$.
- (5) If $a \cup b(A)$ then $\mathcal{M}(ab/A) = \mathcal{M}(a/A) \oplus \mathcal{M}(b/A)$ and $\mathcal{M}(a/A) = \mathcal{M}(a/Ab)$.
- (6) If $\mathcal{M}(a/A) < \infty$ and $a \downarrow b(A)$ then $\mathcal{M}(a/A) = \mathcal{M}(a/Ab)$ implies $a \downarrow b(A)$.
- (7) If $B \supset A$ is finite then for every a there is an $a' \equiv a(A)$ with $a' \supset B(A)$.
- (8) Assume $A \subset B \subset C$. Then either $\operatorname{Tr}_A(a/C)$ is open in $\operatorname{Tr}_A(a/B)$ or $\operatorname{Tr}_A(a/C)$ is nowhere dense in $\operatorname{Tr}_A(a/B)$.

Now we construct small weakly minimal groups with a generic type of arbitrarily large finite \mathcal{M} -rank, and of \mathcal{M} -rank ∞ .

Let $V = {}^{\omega \times \omega}2 = \prod_n {}^{\{n\} \times \omega}2$, equipped with the usual product topology. V can be made into a group structure, with pointwise addition modulo 2. Let $P_n = \{f \in V : f | (n \times n) \equiv 0\}$ and $G = (V, +, P_n)_{n < \omega}$. G is the standard example of a small weakly minimal group. Also, Th(G) has few countable models, hence necessarily \mathcal{M} -rank of any isolated generic type is 1 (by [Ne1]). The set of generic types of G is naturally homeomorphic with $\prod_n {}^{\{n\} \times \omega}2$. Let

$$H_n = \prod_{i < n} \{0\} \times \prod_{i \geq n} {}^{\{i\} \times \omega} 2 = \{ f \in V \colon f | (n \times \omega) \equiv 0 \}.$$

We see that $V=H_0>H_1>H_2>\dots$, moreover every H_{i+1} is closed and nowhere dense in H_i . Our intention is to expand G so that it remains small and weakly minimal, but $H_i, i<\omega$, are type-definable over \emptyset generic subgroups of G. We cannot simply expand G by adding the H_i 's as the new predicates, since this would destroy not only weak minimality, but superstability of T. Instead we name in G certain generic clopen subgroups, which approximate the H_i 's. Specifically, let $H_{n,m}=\{f\in V\colon f|(n\times m)\equiv 0\}$. Notice that $P_n=H_{n,n}$. We see that $H_n=\bigcap_m H_{n,m}$. Let $G_\infty=(V,+,\{P_n,n<\omega\},\{H_{n,m}\colon n< m<\omega\})$. G_∞ is weakly minimal and small.

For instance, we describe $S(\emptyset)$. For generic $a \in G_{\infty}$ we define a function f_a : $\{(n,m): n \leq m\} \to \{0,1\}$ by $f_a(n,m) = 0$ iff $a \in H_{n,m}$. Clearly f_a determines $tp(a/\emptyset)$. We show that the set $F = \{f_a: a \in G_{\infty} \text{ is generic }\}$ is countable.

Suppose $f \in F$ and $f \not\equiv 0$. Let (n_0, m_0) be minimal (with respect to the lexicographical order on $\omega \times \omega$) such that $m_0 \geq n_0$ and $f(n_0, m_0) = 1$. It follows that for any n, m with $m \geq n$:

- if $n < n_0$ then f(n, m) = 0,
- if $n = n_0$ and $m < m_0$ then f(n, m) = 0,
- if $n \ge n_0$ and $m \ge n_0$ then f(n, m) = 1.

There are yet finitely many pairs (n, m) with $m \ge n$ to consider, namely these with $m_0 > m \ge n \ge n_0$. This shows that F is countable.

Actually, $\max\{CB(p): p \in S(\emptyset)\} = \omega$ here. Also by the choice of H_i 's, \mathcal{M} -rank of any isolated generic type over \emptyset in G_{∞} equals ∞ . If we define G_N (for some N > 0) as $(V, +, \{P_n, n < \omega\}, \{H_{n,m}, n < m < \omega \text{ and } n < N\})$, then we get that G_N is weakly minimal, small and the \mathcal{M} -rank of any isolated generic type over \emptyset in G_N equals N.

We say that T is **m-normal** if for all finite sets $A \subset B$ and $a \downarrow B(A)$, there is an $E \in FE(A)$ (in suitable variables) such that the orbit of $Tr_A(a/B) \cap [E(x,a)]$ under the action of $Aut(\mathfrak{C}/Aa)$ is finite.

The following remark yields an equivalent definition.

Remark 0.2: $\operatorname{Tr}_A(a/B) \cap [E(x,a)]$ has finitely many conjugates over Aa iff for some $b \in acl(A), \operatorname{Tr}_A(a/Bb)$ is $Aut(\mathfrak{C}/Aab)$ -invariant.

Proof: \to . First notice that $\operatorname{Tr}_A(a/B) \cap [E(x,a)] = \operatorname{Tr}_A(a/Ba')$, where a' = a/E. Let $X_0 = \operatorname{Tr}_A(a/Ba'), X_1, \ldots, X_n$ (for some n) be the Aa-conjugates of $\operatorname{Tr}_A(a/Ba')$. For $i > 0, X_i \neq X_0$, hence there is $a_i \in acl(A)$, a name of an equivalence class of some $E_i \in FE(A)$ meeting X_0 and disjoint from X_i . Let a'' be the concatenation of a_1, \ldots, a_n . We see that $a'' \in acl(A)$ and $\operatorname{Tr}_A(a/Ba')$ is $\operatorname{Aut}(\mathfrak{C}/Aaa'')$ -invariant. $\operatorname{Tr}_A(a/Ba'a'')$ is open in $\operatorname{Tr}_A(a/Ba')$, hence there is $E' \in FE(A)$ such that $\operatorname{Tr}_A(a/Ba'a'') \cap [E'(x,a)] = \operatorname{Tr}_A(a/Ba') \cap [E'(x,a)]$, and this set is clearly $\operatorname{Aut}(\mathfrak{C}/Aaa'')$ -invariant. Let b = a'a''(a/E'). We see that $\operatorname{Tr}_A(a/Bb) = \operatorname{Tr}_A(a/Ba'a'') \cap [E'(x,a)]$ is $\operatorname{Aut}(\mathfrak{C}/Aab)$ -invariant.

 \leftarrow . As above, $\operatorname{Tr}_A(a/Bb)$ is open in $\operatorname{Tr}_A(a/B)$, hence for some $E \in FE(A)$, $\operatorname{Tr}_A(a/B) \cap [E(x,a)]$ is $\operatorname{Aut}(\mathfrak{C}/Aab)$ -invariant. As $b \in \operatorname{acl}(A)$, we get that $\operatorname{Tr}_A(a/B) \cap [E(x,a)]$ has finitely many conjugates over Aa .

The definition of m-normality is parallel to the definition of weak normality (1-basedness). More details are given in the next section. We prove there the \mathcal{M} -gap conjecture for m-normal theories. One can see that the theories $Th(G_{\infty}), Th(G_N)$ are m-normal. In fact, for any finite set $A \subset G_{\infty}$ (or $\subset G_N$) and any $a \in G_{\infty}$ generic over A, we have that Tr(a/A) is a Boolean combination of generic traces of cosets of type-definable over \emptyset generic subgroups of G_{∞} (or G_N , respectively). Also, as the next remark shows, it suffices to check m-normality on the real sort $\mathfrak{C}_{=}$ of \mathfrak{C}^{eq} .

Remark 0.3: Assume for all finite $A \subset B \subset \mathfrak{C}$ and $a \subset \mathfrak{C}_{=}$ with $a \downarrow B(A)$, for some $b \in acl(A)$, $\operatorname{Tr}_A(a/Bb)$ is $Aut(\mathfrak{C}/Aab)$ -invariant. Then T is m-normal.

Proof: Suppose a is imaginary, say a name of an E-class for some equivalence relation E. We may choose a' with a = a'/E and $a' \supset B(Aa)$. By assumption, choose $c \in acl(A)$ with $\text{Tr}_A(a'/Bc)Aut(\mathfrak{C}/Aa'c)$ -invariant. It follows that $\text{Tr}_A(a/Bc)$ is $Aut(\mathfrak{C}/Aac)$ -invariant. Indeed, suppose $f \in Aut(\mathfrak{C}/ac)$ and $f(B) = B^*$. Wlog $a' \supset BB^*(Aa)$. This implies $B \equiv B^*(Aa'c)$. Hence $\text{Tr}_A(a'/B^*c) = \text{Tr}_A(a'/Bc)$ and $\text{Tr}_A(a/B^*c) = \text{Tr}_A(a/Bc)$.

1. m-normal theories

In this section we prove that an m-normal theory satisfies the \mathcal{M} -gap conjecture. We also define some special objects, called *-finite tuples, which play a similar role for m-independence, as imaginaries for forking independence. *-finite tuples allow us to re-define the notion of m-normal theory more smoothly. To justify our definition of an m-normal theory, we begin by proving that an m-stable theory is 'finitely m-based'.

PROPOSITION 1.1: Assume T is m-stable, A, B are finite and $p \in S(A)$. Then there is a finite set C of A-independent realizations of p such that $C \downarrow B(A)$ and for every a realizing p with $a \downarrow BC(A)$, we have $a \stackrel{\text{n}}{\downarrow} B(AC)$.

Proof: Suppose not. Then we can find recursively $c_n, n < \omega$, realizing p such that

- (a) $C = \{c_n, n < \omega\}$ is A-independent and $B \downarrow C(A)$,
- (b) $c_n \mathcal{D} B(Ac_{< n})$ for every n.

By symmetry of m-independence, $B^{n} C_n(Ac_{< n})$. This means that $\mathcal{M}(B/Ac_{< 0}) > \mathcal{M}(B/Ac_{< 1}) > \dots$, contradicting m-stability of T.

The next corollary says that, at least for m-stable T, \mathcal{M} -rank has local character.

COROLLARY 1.2: Assume T is m-stable, p = tp(a/A) for some finite A and α is an ordinal. Then the following conditions are equivalent.

- (1) $\mathcal{M}(p) \geq \alpha + 1$.
- (2) For some finite A-independent set B of realizations of p, $a \downarrow B(A)$, $\mathcal{M}(a/AB) \geq \alpha$ and $a \not \downarrow B(A)$.

Proof: It suffices to prove $(1) \to (2)$. By (1) there is a finite set B' with $a \downarrow B'(A)$, $\mathcal{M}(a/AB') \geq \alpha$ and $a \not \downarrow B'(A)$. Let C be a finite set provided by

Proposition 1.1 (for B := B'). By Lemma 0.1(7) we can assume $a \downarrow C(AB')$. In particular, $a \downarrow B'C(A)$, hence by the choice of $C, a \downarrow B'(AC)$. Therefore

$$\mathcal{M}(a/AB') = \mathcal{M}(a/AB'C) = \mathcal{M}(a/AC).$$

Since $\mathcal{M}(a/AB') < \mathcal{M}(a/A)$, also $\mathcal{M}(a/AC) < \mathcal{M}(a/A)$. Hence $a^{"}\mathcal{L}C(A)$. We see that B := C satisfies our demands.

Corollary 1.2 implies that if T is m-stable and $\varphi(x) \in p = tp(a/A)$, then $\mathcal{M}(a/A)$ computed in \mathfrak{C} as a model of T equals $\mathcal{M}(a/A)$ computed in $\varphi(\mathfrak{C})$ as a model of $T \lceil \varphi$ (or even computed in $p(\mathfrak{C})$). We can think of C in Proposition 1.1 as an 'm-basis' of B over $p(\mathfrak{C})$. The next lemma says that when T is m-normal then for a fixed a realizing p we can choose C of size 1 (just like in the case of forking independence in a 1-based theory).

LEMMA 1.3: Assume T is m-normal, $A \subset B$ are finite and p = tp(a/A) for some $a \downarrow B(A)$. Then there is c realizing p such that $\{B, a, c\}$ is A-independent, $a \downarrow B(Ac)$ and $a \downarrow c(AB)$.

Proof: Choose $a' \in acl(A)$ such that $\operatorname{Tr}_A(a/Ba')$ is $\operatorname{Aut}(\mathfrak{C}/Aaa')$ -invariant. By Lemma 0.1(7) choose $c \equiv a(Ba')$ with $c \not \supset a(Ba')$. By symmetry (Lemma 0.1(1)) it follows that $a \not \supset c(B)$. This implies that

(a) $\operatorname{Tr}_A(a/Ba'c)$ is open in $\operatorname{Tr}_A(a/Ba')$.

To prove that $a \supset B(Ac)$ notice that $\text{Tr}_A(a/Ba') = \text{Tr}_A(c/Ba')$ is also $Aut(\mathfrak{C}/Aca')$ -invariant. Hence

(b)
$$\operatorname{Tr}_A(a/Aca') \subset \operatorname{Tr}_A(a/Ba')$$
.

Since clearly $\operatorname{Tr}_A(a/Bca') \subset \operatorname{Tr}_A(a/Aca')$, by (a) we get that $\operatorname{Tr}_A(a/Bc)$ is not nowhere dense in $\operatorname{Tr}_A(a/Ac)$. By Lemma 0.1(8), $\operatorname{Tr}_A(a/Bc)$ is open in $\operatorname{Tr}_A(a/Ac)$, hence $a \stackrel{\text{nt}}{\longrightarrow} B(Ac)$.

The next theorem says that for an m-normal theory the \mathcal{M} -gap conjecture is true.

THEOREM 1.4: Assume T is small, stable and m-normal. Then there is no type p in T with $\omega \leq \mathcal{M}(p) < \infty$.

Proof: Suppose there is a type p in T with $\omega \leq \mathcal{M}(p) < \infty$. We can assume $\mathcal{M}(p) = \omega$ and $p \in S(\emptyset)$. Let $X = \operatorname{Tr}(p)$. We define a binary relation R on X as follows. Suppose $r, r' \in X$. We have r R r' iff for some a, a' realizing r, r' respectively we have $a \downarrow a'$ and $a \not \searrow a'$. We have

(a) R is an equivalence relation.

$$\mathcal{M}(a/a'') \leq \mathcal{M}(aa'/a'') \leq \mathcal{M}(a/a''a') \oplus \mathcal{M}(a'/a'') < \omega.$$

This gives $a^{m} a''$ and r R r''.

Let $r \in X$ and let Y be the equivalence class of r. Let Z = cl(Y) be the topological closure of Y. Let a realize r and let \mathcal{P} be the set of non-forking extensions of p over a with finite \mathcal{M} -rank. We see that $Y = \bigcup \{ \operatorname{Tr}(q) : q \in \mathcal{P} \}$. Moreover, Z is nowhere dense. Otherwise, by smallness, for some $q \in \mathcal{P}$, $\operatorname{Tr}(q)$ is open in Z, and open in X, a contradiction. Since Z is $\operatorname{Aut}(\mathfrak{C}/a)$ -invariant, we get that for any $r' \in Z$, $r \in \mathbb{R}$, that is Y = Z. So we have proved that

(b) the R-equivalence class Y of r is closed and nowhere dense, and for some $q \in \mathcal{P}$, Tr(q) is open in Y.

Moreover we have

(c) for any $n < \omega$ and any open neighbourhood U of r there is $q \in \mathcal{P}$ with $\operatorname{Tr}(q) \subset U$ and $\mathcal{M}(q) > n$.

Indeed, let a realize r. Choose $E \in FE(\emptyset)$ such that $X \cap [E(x,a)] \subset U$. Let a' = a/E; we can add a' to the signature so that $X \subset U$. Choose a finite set B with $a \downarrow B$, $a \not \subset B$ and $\mathcal{M}(a/B) > n$. Clearly $\mathcal{M}(a/B)$ is finite. By Lemma 1.3 there is a c realizing p such that $\{B,a,c\}$ is independent, $a \not \subset B(c)$ and $a \not \subset B(c)$. It follows that $\mathcal{M}(a/c) = \mathcal{M}(a/B)$, and $c \in B(c)$. Switching the roles of $c \in B(c)$ set that there is c' realizing $c \in B(c)$ with $a \not \subset C(c)$ and $a \in B(c)$ and $a \in B(c)$ satisfies our demands.

Now fix a type $q \in \mathcal{P}$ with $\operatorname{Tr}(q)$ open in Y, and let $n = \mathcal{M}(q)$. Let b realize q and r' = stp(b). By m-normality there is $E \in FE(\emptyset)$ such that $U = \operatorname{Tr}(q) \cap [E(x,b)]$ (an open neighbourhood of r' in Y) is $\operatorname{Aut}(\mathfrak{C}/bb')$ -invariant for some $b' \in acl(\emptyset)$. It follows that

(d) for every non-forking extension q' of p over bb' with $\mathcal{M}(q')$ finite and $\operatorname{Tr}(q') \subset U$, we have $\mathcal{M}(q') \leq n$.

To see this, suppose that for some q' as in (d), $\mathcal{M}(q') > n$. Let c realize q'. Wlog a, b, c are independent. Further on we can assume that c = a(bb'). This implies $\mathcal{M}(c/abb') > n$. On the other hand, since $Tr(q') \subset U$, we have that c realizes q, hence $\mathcal{M}(c/ab) \leq \mathcal{M}(c/a) = \mathcal{M}(q) = n$, a contradiction.

However, (c) holds also for r', hence we get a contradiction with (d).

In its current form, the definition of an m-normal theory does not resemble the definition of 1-based (or: weakly normal) theory. This is because we lack a counterpart of imaginary elements here. So below we introduce some other kind of objects, called *-finite tuples, which play for m-independence a similar role as imaginaries for forking independence.

First recall that if I is any index set and $a_I = \langle a_i, i \in I \rangle$, then Shelah considered in [Sh] the *-type of a_I over a set A (denoted by $tp^*(a_I/A)$) as the set of formulas $\varphi(x_J)$ over A, for some finite $J \subset I$ such that $\varphi(a_J)$ holds. Here we adopt the convention that if J is any index set then x_J is the tuple of variables $\langle x_i, i \in J \rangle$, and $a_J = \langle a_i, i \in J \rangle$. Thus $tp^*(a_I/A)$ is an element of the space of complete types over A, in variables x_I , denoted by $S_I(A)$. Topologically, it is the Stone space of the Lindenbaum-Tarski algebra of formulas in variables x_I and parameters from A. We call a_I a *-tuple (indexed by I).

Our aim is to regard certain *-tuples similarly as finite tuples of elements of \mathfrak{C} . All *-tuples form too broad a class of objects for our purposes. For instance, if $S(acl(\emptyset))$ is uncountable and a_I is an enumeration of $acl(\emptyset)$, then $S(a_I)$ is uncountable, although for any finite tuple a of elements of \mathfrak{C} , S(a) is countable (throughout we assume T is small). So we say that

 a_I is a *-finite tuple if for some finite set $A \subset \mathfrak{C}, a_I \subset dcl(A)$.

T is countable, hence if a_I is *-finite then we can assume I is countable. So clearly we have

Remark 1.5: If a_I is *-finite then $S(a_I)$ is countable.

Similarly we extend the definition of \mathcal{M} -rank $\mathcal{M}(a/A)$ to the case when a is *-finite and A is a finite set of *-finite tuples: the set B in (2) in the introduction is now required to be a finite set of *-finite tuples. Most importantly we have

PROPOSITION 1.6: Lemma 0.1 remains true if a, b, c denote *-finite tuples and A, B, C denote finite sets of *-finite tuples. Also, if T is a superstable theory with few countable models then $\mathcal{M}(a/A)$ is finite for any *-finite tuple a and any finite set A of *-finite tuples.

Proof: We concentrate on the last clause, leaving the first part of the proposition to the reader. Take a finite set A' of standard elements with $A \subseteq dcl(A')$ and $a \ A'(A)$. Hence $\mathcal{M}(a/A') = \mathcal{M}(a/A)$, and we can assume that A is a finite set of standard elements. Next take a standard a' with $a \subseteq dcl(a')$. So $\mathcal{M}(a/Aa') = 0$ and by the few models assumption $\mathcal{M}(a'/A) < \omega$. By Lemma 0.1 we have

$$\mathcal{M}(a/A) \leq \mathcal{M}(aa'/A) \leq \mathcal{M}(a/Aa') \oplus \mathcal{M}(a'/A) < \omega.$$

From now on in this section A, B, C usually denote finite sets of *-finite tuples and a, b, c denote *-finite tuples. If we want to stress that a is a finite tuple of elements of \mathfrak{C} , we call a standard. We say that a_I is *-algebraic over A ($a_I \in acl^*(A)$) if $\{a_i, i \in I\} \subset acl(A)$. a_I is *-algebraic if a_I is *-algebraic over \emptyset . We say that a is algebraic over A ($a \in acl(A)$) if there are only finitely many a' such that $a' \equiv a(A)$. Similarly we define the notions of *-definability (dcl^*) and definability (dcl) of *-finite tuples. Notice that $a \in acl^*(A)$ does not imply $a \in acl(A)$, while $a \in dcl^*(A)$ implies $a \in dcl(A)$. Also, for $a \in acl^*(A)$ we have $\mathcal{M}(a/A) = 0$ iff $a \in acl(A)$. We say that $tp^*(a/A)$ is stationary if for any $a' \equiv a(A)$ we have $a' \equiv a(acl(A))$.

We should remark here that, despite our having changed the general set-up, for standard a and A, $\mathcal{M}(a/A)$ is the same, no matter if in the process of computation we use *-finite tuples or not.

Fact 1.7: If a, A are standard, then $\mathcal{M}(a/A) \geq \alpha + 1$ iff for some standard finite $B \supset A$, $a \downarrow B(A)$, $\mathcal{M}(a/B) \geq \alpha$ and $a \not \downarrow B(A)$.

The next remark shows that for an ω -stable T *-finite tuples are redundant, and for a superstable T any *-finite tuple is *-algebraic over some standard subtuple.

Remark 1.8: (1) If T is ω -stable then every *-finite tuple b is equidefinable with a standard $b' \subset b$.

(2) If T is superstable, then every *-finite tuple b is *-algebraic over some standard $b' \subset b$.

Proof: Suppose $b \subset dcl(a)$ for some standard a. Choose a finite (hence standard) $b' \subset b$ with $a \downarrow b(b')$. Clearly, b is *-algebraic over b'. This proves (2). For (1), notice that when T is ω -stable, then $\mathcal{M}(a/b') = 0$, hence there is some standard $c' \in acl(b')$ such that tp(a/b'c') is stationary. It follows that $b \in dcl(b'c')$. It is easy to replace c' by a finite subset of b so that still $b \in dcl(b'c')$.

*-Algebraic elements are very important for the description of m-independence, as the next lemma shows.

LEMMA 1.9: For any a and A there is $b \in dcl^*(Aa)$ such that b is *-algebraic over A and $\mathcal{M}(a/Ab) = 0$. In particular, $\mathcal{M}(b/A) = \mathcal{M}(a/A)$ and for any B with $a \perp B(A)$ we have $a \stackrel{\text{\tiny odd}}{\longrightarrow} B(Ab)$.

Proof: Say, $a = a_I$. Let I' be the set of A-definable finite equivalence relations $E(x_J, x'_I)$ on the sort of a_J (J varies over finite subsets of I). Let

$$b = \langle a_J/E : E = E(x_J, x_J') \in I' \rangle.$$

Since a, A are *-finite, also b is *-finite. Clearly, $b \in dcl^*(Aa)$ and b is *-algebraic over A. By the choice of b we have $\mathcal{M}(a/Ab) = 0$. We leave the rest of the proof to the reader.

Lemma 1.9 shows that in order to calculate $\mathcal{M}(a/A)$ it suffices to calculate $\mathcal{M}(b/A)$ for some b *-algebraic over A. If a is *-algebraic over A then for any $B, a \downarrow B(A)$. Hence by Proposition 1.6 we have that if $a \not\vdash a'(A), b$ is *-algebraic over A and $\mathcal{M}(b/Aa) = \mathcal{M}(b/Aa') = 0$, then $\mathcal{M}(b/A) = 0$, that is b is algebraic over A. We shall frequently use this remark in the proof of the next theorem. This theorem provides us with an alternative definition of m-normality, parallel to the definition of 1-basedness. Recall that T is 1-based iff for all standard a, b, c there is d with U(d/ac) = U(d/bc) = 0 and $a \downarrow b(cd)$.

Theorem 1.10: Assume T is small stable. The following conditions are equivalent.

- (1) T is m-normal.
- (2) For all a, b, c, if $a \downarrow b(c)$ then for some d with $\mathcal{M}(d/ac) = \mathcal{M}(d/bc) = 0$ and $d \downarrow ab(c)$, we have $a \downarrow b(cd)$.
- (3) Like (2), but with d additionally *-algebraic over c.

Proof: $(3)\rightarrow(2)$ is clear. $(2)\rightarrow(1)$. Suppose a,b,c,d are as in (2). Let $c'\in acl(c)$ be standard, and such that $tp^*(d/acc'), tp^*(d/bcc')$ are stationary and $\operatorname{Tr}_c(a/bcc'd) = \operatorname{Tr}_c(a/cc'd)$. Since $tp^*(d/bcc')$ is stationary,

$$\operatorname{Tr}_c(a/bcc'd) = \operatorname{Tr}_c(a/bcc') = \operatorname{Tr}_c(a/cc'd).$$

296 L. NEWELSKI Isr. J. Math.

Since $tp^*(d/acc')$ is stationary, $\operatorname{Tr}_c(a/cc'd)$ is $\operatorname{Aut}(\mathfrak{C}/acc')$ -invariant. Also, $\operatorname{Tr}_c(a/bcc')$ is an open subset of $\operatorname{Tr}_c(a/bc)$ (as $c' \in acl(c)$; here we really do not need the fact that c' is standard). When a,b,c are standard, this argument shows that T is m-normal.

(1) \rightarrow (3). Suppose $a \downarrow b(c)$, and choose standard a', b', c' with $a \subset dcl(a')$, $b \subset dcl(b')$ and $c \subset dcl(c')$. Moreover we can assume that

(a)
$$c' \overset{\text{d}}{\downarrow} ab(c), b' \overset{\text{d}}{\downarrow} ac'(b)$$
 and $a' \overset{\text{d}}{\downarrow} b'c'(a)$.

This implies

(b)
$$a' \cup b'(ac'), a \cup b'(bc')$$
 and $a' \cup b'c'(c)$.

Since T is m-normal, there is $d' \in acl(c')$ such that $\operatorname{Tr}_{c'}(a'/b'c'd')$ is $Aut(\mathfrak{C}/a'c'd')$ -invariant. By (b), $\operatorname{Tr}_{c'}(a'/b'c'd')$ is naturally homeomorphic to $\operatorname{Tr}_c(a'/b'c'd')$, which is also $Aut(\mathfrak{C}/a'c'd')$ -invariant. Let I = FE(c) and for $E \in I$ let d_E be the name for the set of E-classes meeting $\operatorname{Tr}_c(a'/b'c'd')$. We see that d_E is a standard (imaginary) element, which is $Aut(\mathfrak{C}/a'c'd')$ -invariant. Hence $d_E \in dcl(a'c'd') \cap dcl(b'c'd')$. Let $d = \langle d/E, E \in I \rangle$. So d is *-finite, *-algebraic over c and $d \in dcl^*(a'c'd') \cap dcl^*(b'c'd')$. We have

(c)
$$\mathcal{M}(d/b'c) = 0 = \mathcal{M}(d/ac')$$
.

Indeed, $d' \in acl(c')$ gives $\mathcal{M}(d/a'c') = 0 = \mathcal{M}(d/b'c')$. (a) gives that $c' \mathcal{D} a'b'(c)$, hence $a' \mathcal{D} b'c'(b'c)$. Therefore $\operatorname{Tr}_c(a'/b'c'd')$ (homeomorphic with $\operatorname{Tr}_{b'c}(a'/b'c'd')$) is open in $\operatorname{Tr}_c(a'/b'c)$ (homeomorphic with $\operatorname{Tr}_{b'c}(a'/b'c)$), which means that $d \in acl(b'c)$ and $\mathcal{M}(d/b'c) = 0$. By (b) we have $a' \mathcal{D} b'(ac')$, so $\mathcal{M}(d/a'c') = 0 = \mathcal{M}(d/b'c')$ gives $\mathcal{M}(d/ac') = 0$.

Now we have a
blucklim b(cd). Indeed, since d is *-algebraic over c and $d' \in acl(c')$, by (b) we have a'
blucklim b'c'd'(cd). Clearly, $\operatorname{Tr}_c(a'/cd) = \operatorname{Tr}_c(a'/b'c'd')$ (as $d' \in acl(c')$). Hence a' b'(cd) holds. As $a \in dcl(a')$ and $b \in dcl(b')$, we get $a b \in dcl(a')$.

To finish, we prove that $\mathcal{M}(d/bc) = 0 = \mathcal{M}(d/ac)$. To see this, notice that $b' \ ac'(bc)$, hence using (c) we get $\mathcal{M}(d/bc) = 0$. Similarly, $c' \ ab(c)$ gives $b'' \ c'(ac)$ and $\mathcal{M}(d/ac) = 0$.

Regarding condition (3) in Theorem 1.10, notice that if d is *-algebraic over c and $\mathcal{M}(d/ac)=0$ then $d\in acl(ac)$. The next corollary is a kind of coordinatization theorem.

COROLLARY 1.11: Assume T is small, stable and m-normal. Then for any a, b with $0 < \mathcal{M}(a/b) < \infty$ there is $a' \in acl(ab)$ such that a' is *-algebraic over b

and $\mathcal{M}(a/a'b) = 1$. In particular, if $\mathcal{M}(a/b) = n$ then there are *-algebraic over b *-finite tuples a_0, \ldots, a_{n-1} such that $a_i \in acl(a_{i+1}b)$ for $i < n-1, a_{n-1} \in acl(ab), \mathcal{M}(a_i/a_{< i}b) = 1$ and $\mathcal{M}(a/a_{< n}) = 0$.

Proof: By Theorem 1.4, $\mathcal{M}(a/b)$ is finite, say n. Choose c with $a \downarrow c(b)$ and $\mathcal{M}(a/bc) = 1$. We get that the required a' exists by Theorem 1.10. The rest is easy.

*-Algebraic tuples may be regarded as types themselves. Specifically, suppose a is *-algebraic over b. Choose standard a' with $a \subset dcl(a')$. Hence there is a tuple $f = \langle f_i, i \in I \rangle$ of 0-definable functions such that $a = a_I = f(a')$. Let $p_a = \operatorname{Tr}_b(a'/ab)$. Since p_a is a closed subset of S(acl(b)), we can regard it as a type over acl(b) (p_a is just the type over acl(b) generated by tp(a'/ab)). We have that $Aut(\mathfrak{C}/ab) = Aut(\mathfrak{C}/p_ab)$. Indeed, first suppose $g \in Aut(\mathfrak{C})$ fixes ab. Then g fixes also tp(a'/ab), hence $g(p_a) = p_a$ and $g \in Aut(\mathfrak{C}/p_ab)$. Now suppose g fixes b and p_a . It follows that a'' = g(a') realizes p_a . But ' $a_I = f(x)$ ' is expressed by a set of formulas contained in $p_a(x)$, hence also g(a) = f(a'') = a.

We see that a and p_a are interdefinable in $\mathfrak C$ over b. We may use *-algebraic tuples to construct models with some special properties. Specifically, we may try to omit the types p_a corresponding to *-algebraic tuples a. The choice of the type p_a depends on the choice of standard a' with $a \subset dcl(a')$, so it is not uniquely determined. Thus it is more appropriate to speak of omitting *-algebraic tuples rather than the types corresponding to them.

First we must specify when we shall regard a *-algebraic tuple realized, or more properly, discerned in a model M. The most liberal approach is that we regard a *-algebraic over b tuple a discerned in a model M containing b, if some type p_a corresponding to a is realized in M. In other words, suppose M contains b (if $b=b_J$ is a *-finite tuple, then this means that $\{b_i, i \in J\} \subset M$). We say that M discerns a over b if for some standard $a' \in M$, $a \subset dcl(a'b)$. Consequently, we say that M omits a over b if M does not discern a over b. We say that M discerns/omits a if M discerns/omits a over \emptyset . Notice that omitting a over b is equivalent to omitting potentially many types over acl(b). The following is an omitting *-algebraic tuples theorem . It corresponds to omitting $< 2^{\aleph_0}$ complete non-isolated types in the classical case [Sh, IV, 5.16]. The proof is similar.

THEOREM 1.12: Assume T is small stable. Assume $\kappa < 2^{\aleph_0}$, b is *-finite, $a_{\alpha}, \alpha < \kappa$, are *-algebraic over b, and for all $\alpha < \beta < \kappa$, $tp^*(a_{\alpha}/b) = tp^*(a_{\beta}/b)$ and $\mathcal{M}(a_{\alpha}/b) > 0$. Then there is a countable model M containing b and omitting every $a_{\alpha}, \alpha < \kappa$.

Proof: Extending the signature, we can assume $b = \emptyset$. Let $p = tp^*(a_{\alpha}/\emptyset), \alpha < \kappa$. Suppose each a_{α} is indexed by a countable set I. Suppose a' is standard and $a_{\alpha} \subset dcl(a')$. This means that there is a tuple $f = \langle f_i, i \in I \rangle$ of 0-definable functions such that $a_{\alpha} = f(a')$. Potentially there may be many such tuples of functions. The next claim shows that we can restrict ourselves to countably many of them.

CLAIM 1: There are countably many I-indexed tuples f^n , $n < \omega$, of 0-definable functions such, that for any a realizing p and any standard a' with $a \subset dcl(a')$, we have $a = f^n(a')$ for some n.

Proof: Let a realize p. Since a is *-finite and T is small, S(a) is countable. For standard a', the fact that $a \subset dcl(a')$ is witnessed by some I-indexed f depending only on tp(a'/a). Hence there are only countably many cases to consider.

This claim implies also that in every countable model M, only countably many *-finite tuples realizing p are discerned. Our aim is to construct now a family of countable models M_{η} , $\eta \in {}^{\omega}2$, such that no a realizing p is discerned in more than one of them. We specify M_{η} by describing the ω -type $p_{\eta}(x_{\omega}) = tp(M_{\eta}/acl(\emptyset))$ in variables $x_{\omega} = \langle x_n, n < \omega \rangle$. Specifically, we construct a tree of formulas $\{\varphi_{\nu}(x_{\nu}), \nu \in {}^{<\omega}2\}$ over $acl(\emptyset)$ such that $x_{\nu} = \langle x_0, \dots, x_{n-1} \rangle$, where $n = |\nu|$ and

- (a) for every $\eta \in {}^{\omega}2$, the set $p_{\eta} = \{\varphi_{\eta|n}(x_{\eta|n}), n < \omega\}$ is a complete ω -type over $acl(\emptyset)$, whose realization is a model of T,
- (b) if $\eta \neq \eta' \in {}^{\omega}2$ and $\eta|n \neq \eta'|n$ then whenever $a_{\eta|n}, a_{\eta'|n}$ realize $\bigwedge_{i < n} \varphi_{\eta|i}(x_{\eta|i}), \bigwedge_{i < n} \varphi_{\eta'|i}(x_{\eta'|i})$ respectively, and $c \subset a_{\eta|n}, c' \subset a_{\eta'|n}$ then for every $i, j < n, f^i(c) \neq f^j(c')$ (provided c, c' have suitable arity).

The construction relies on the following claim:

CLAIM 2: Suppose $\varphi(x), \psi(x)$ are consistent formulas over $acl(\emptyset)$ and $j, j' < \omega$. Suppose that for some c realizing φ and c' realizing $\psi, f^j(c), f^{j'}(c')$ realize p. Then there are consistent formulas $\varphi'(x), \psi'(x)$ over $acl(\emptyset)$, below φ, ψ respectively, such that there are no c, c' realizing φ', ψ' respectively, with $f^j(c)$ realizing p and p and p are p and p and p are p and p and p are p and p are p and p and p and p are p and p are p and p and p are p and p are p are p and p and p and p are p and p are p are p and p are p and p are p and p are p are p and p are p are p are p and p are p are p are p and p are p are p and p are p are p and p are p and p are p and p are p are p and p are p are p and p are p are p are p and p are p and p are p and p are p are p are p are p and p are p are p are p are p and p are p and p are p are p are p are p are p and p are p

Proof: Say, $\varphi(x)$, $\psi(x)$ are over $d \in acl(\emptyset)$. Choose c, c' realizing φ, ψ respectively, such that $f^j(c)$, $f^{j'}(c')$ realize p. Since $\mathcal{M}(p) > 0$ and $d \in acl(\emptyset)$, we have that $\text{Tr}(f^j(c)/d)$ and $\text{Tr}(f^{j'}(c')/d)$ are infinite. So we can choose a, a' realizing distinct types in $\text{Tr}(f^j(c)/d)$, $\text{Tr}(f^{j'}(c')/d)$ respectively. As $a \neq a'$, there is a

finite $J \subset I$ such that $a_J \neq a'_J$. Let $\varphi'(x)$ be $\varphi(x) \wedge f_J^j(x) = a_j$ and $\psi'(x)$ be $\psi(x) \wedge f_J^{j'}(x) = a'_J$. Here $f_J^j = \langle f_i^j, i \in J \rangle$. It suffices to show that φ', ψ' are consistent. Since $a, a', f^j(c), f^{j'}(c')$ realize p, they are *-algebraic, hence $a \equiv f^j(c)(d)$ and $a' \equiv f^{j'}(c')(d)$. This implies that there are c^0 realizing φ and c^1 realizing ψ with $f^j(c^0) = a, f^{j'}(c^1) = a'$. Hence φ', ψ' are consistent.

Now for $\eta \in {}^{\omega}2$ let M_{η} be a countable model, whose universe is an ω -tuple realizing p_{η} . By Claim 1 and (b), no a realizing p is discerned in more than one of the models $M_{\eta}, \eta \in {}^{\omega}2$. Hence there is an $\eta \in {}^{\omega}2$ such that M_{η} omits all $a_{\alpha}, \alpha < \kappa$.

Remark: In some cases, we can omit simultaneously 2^{\aleph_0} -many *-algebraic types. For instance, suppose a is *-algebraic, $a' \subset dcl(a)$, $\mathcal{M}(a'/\emptyset) > 0$ and $\mathcal{M}(a/a') > 0$. By Theorem 1.12, there is a countable model M omitting a'. But any such model must omit also any a'' with $a'' \equiv a(a')$. There are 2^{\aleph_0} such a'', as $\mathcal{M}(a/a') > 0$. Notice also that if a is *-algebraic and $\mathcal{M}(a/\emptyset) = 0$, then a is discerned in any model M.

2. Traces

In this section we prove that a 1-based superstable theory with few countable models is m-normal. The proof involves an analysis of traces of types under the few models assumption. It turns out that in case of a superstable theory with few countable models these are just finite unions of traces of some formulas, which can be taken weakly normal, if we assume additionally that T is 1-based. When p in the next lemma is a generic type of a group, this lemma is true without the assumption that $\mathcal{M}(p) = 1$ (see the remark after Proposition 3.5). It is not clear if we can omit this assumption in general.

LEMMA 2.1: Assume T is m-stable, A, B are finite, $p \in S(A)$ (or even $p = tp^*(a/A)$ for some *-finite tuple a) and $\mathcal{M}(p) = 1$. Then the set of types $r \in S_{p,nf}(AB)$ such that $\mathcal{M}(r) = 0$ is finite.

Proof: Suppose not. By Proposition 1.1 we can assume that B is an A-independent set of realizations of p. Moreover, by Lemma 1.9 we can assume that p is *-algebraic. In this setting, the failure of the lemma means that the set of a realizing p with $a \in acl(AB)$ is infinite (see the discussion after Proposition 1.6). Since $\mathcal{M}(p) = 1$, acl satisfies the exchange principle on the set of realizations of p. Indeed, the situation resembles much the case of a weakly minimal type, dealt with in [Bu2] (see also [Ne1, lemma 0.2]). The main difference now is that all the stationarizations of p are orthogonal and the set of realizations of p is

naturally a topological space (via the identification with $\operatorname{Tr}_A(p)$) homeomorphic with the Cantor set. We can assume that B is acl-independent over A and that the size of B is minimal possible.

Let \mathcal{P} denote the set of realizations of p, and in this proof we restrict acl to elements of \mathcal{P} . Let W be the topological closure of acl(AB) in \mathcal{P} .

CASE 1: W is uncountable. Then W has a perfect core W'. W' is $Aut(\mathfrak{C}/AB)$ -invariant, hence there is $b \in W'$ with $\mathcal{M}(b/AB) > 0$. Since $\mathcal{M}(b/A) = 1 = \mathcal{M}(p)$, we get $\mathcal{M}(b/AB) = \mathcal{M}(b/A) = 1$, hence the set U of realizations of tp(b/AB) is open in \mathcal{P} . Clearly, $U \subset W$. Since acl(AB) is dense in W, it meets U, hence in fact $U \subset acl(AB)$ and $b \in acl(AB)$. But this implies $\mathcal{M}(b/AB) = 0$, a contradiction.

CASE 2: W is countable infinite. This implies easily that $W \subset acl(AB)$ (as for any $b \in W$, $\mathcal{M}(b/AB) = 0$), hence acl(AB) is topologically closed. Let $b \in acl(AB)$ be an accumulation point. We find an acl-basis B' of the set acl(AB), containing b. By the exchange property, |B| = |B'|, so we can assume B = B'. Let $B'' = B \setminus \{b\}$, and let V be the set of realizations of tp(b/AB''). So V is open in \mathcal{P} and $V \cap acl(AB)$ is infinite and contains b as an accumulation point. It follows that any element of $V \cap acl(AB)$ is an accumulation point of this set, hence $V \cap acl(AB)$ and acl(AB) are uncountable, a contradiction.

The traces of formulas seem least complicated among traces of types. So the next theorem says that under the few-models assumption traces of complete types are not so complicated. More specifically, suppose T is superstable with few countable models and p is a complete type over some finite set A. Then the theorem says that there is a formula φ with $\operatorname{Tr}_A(\varphi) = \operatorname{Tr}_A(p)$. This means that $\varphi(\mathfrak{C})$ is a "large" subset of $p(\mathfrak{C})$. Clearly if p is non-isolated, then necessarily φ forks over A and the parameters of φ are not atomic over A.

THEOREM 2.2: If T is superstable with few countable models, then for every finite A and $p \in S(A)$ there is a formula φ such that $\operatorname{Tr}_A(\varphi)$ is an open subset of $\operatorname{Tr}_A(p)$. In particular, $\operatorname{Tr}_A(p)$ is the union of traces of some finitely many A-conjugates of φ .

Proof: If not, choose $p \in S(A)$ for which the theorem fails, with $\mathcal{M}(p) = N$ minimal possible. Clearly N > 0, since when $\operatorname{Tr}_A(p)$ is finite, then for any a realizing p the formula $\varphi(x) = (x = a)$ is good.

Choose a non-forking extension $p' \in S(B)$ of p with $\mathcal{M}(p') = N - 1$, for some finite $B \supseteq A$. By the minimality of N there is a formula $\varphi(x, b_0)$ with $\operatorname{Tr}_B(\varphi)$ open in $\operatorname{Tr}_A(p')$. Hence also $\operatorname{Tr}_A(\varphi)$ is open in $\operatorname{Tr}_A(p')$. Further, we could take a

non-forking extension p'' of p' over Bb_0 so that $\operatorname{Tr}_A(p'')$ is clopen in $\operatorname{Tr}_A(\varphi(x,b_0))$. So wlog $b_0 \in B$ and $\operatorname{Tr}_A(p') = \operatorname{Tr}_A(\varphi(x,b_0))$. Hence if $s \in S(B) \cap [\varphi(x,b_0)]$ is any type then $\operatorname{Tr}_A(s) = \operatorname{Tr}_A(p')$. So wlog $\varphi(x,b_0)$ isolates a type over Ab_0 .

Let $q = tp(b_0/A)$. For any b realizing q let $b^* \in dcl_A(b)$ be the *-finite *-algebraic over A tuple naming $\operatorname{Tr}_A(\varphi(x,b))$. Specifically, for $E \in FE(A)$ let $\lceil \varphi(\mathfrak{C},b)/E \rceil$ be the name for the finite set of E-classes meeting $\varphi(\mathfrak{C},b)$, and let $b^* = \langle \lceil \varphi(\mathfrak{C},b)/E \rceil \colon E \in FE(A) \rangle$. Also let $q^* = tp(b^*/A)$ and since b^* codes $\operatorname{Tr}_A(\varphi(x,b))$, sometimes we denote $\operatorname{Tr}_A(\varphi(x,b))$ by $X(b^*)$. Notice that

(a) for every b realizing q there is a non-forking extension p'' of p with $\mathcal{M}(p'') = N - 1$ and $X(b^*) = \operatorname{Tr}_A(p'')$, and $\operatorname{Tr}_A(p) = \bigcup \{X(b^*) : b^* \models q^*\}$.

We can also assume that p, q, φ as above are chosen so as to minimize $\mathcal{M}(q^*)$ (with $N = \mathcal{M}(p)$ fixed).

CLAIM 1: $\mathcal{M}(q^*) = 1$.

Proof: Since every $X(b^*)$ is nowhere dense in $\operatorname{Tr}_A(p)$, we see that $\mathcal{M}(q^*) > 0$. Suppose $\mathcal{M}(q^*) > 1$. Let q_d^* be a (necessarily non-forking) extension of q^* over Ad (for some finite tuple d) with $\mathcal{M}(q_d^*) = 1$. Wlog b_0^* realizes q_d^* .

Let $X_d = \bigcup \{X(b^*): b^* \models q_d^*\}$. X_d is a closed Ad-invariant subset of $\operatorname{Tr}_A(p)$. Moreover,

(b) X_d is nowhere dense in $\text{Tr}_A(p)$.

Otherwise, we could find $p'' \in S_{p,nf}(Ad)$ with $\operatorname{Tr}_A(p'')$ contained in X_d and open in $\operatorname{Tr}_A(p)$. Then we could essentially replace p by p'' and q^* by q_d^* , contradicting the minimality of $\mathcal{M}(q^*)$.

At this point, since $\mathcal{M}(q_d^*)$ is determined by $\operatorname{Tr}_A(q_d^*)$, we can replace d by the *-finite *-algebraic over A tuple naming $\operatorname{Tr}_A(q_d^*)$, without violating (b).

Now choose $p'' \in S_{p,nf}(Ad)$ with $\operatorname{Tr}_A(p'')$ being an open subset of X_d . This means that for some standard $d_0 \subseteq d$ and $\delta(x, d_0)$ over Ad_0 ,

(c)
$$\operatorname{Tr}_A(p'') = X_d \cap [\delta(x, d_0)] = \bigcup \{X(b^*) \cap [\delta(x, d_0)] \colon b^* \models q_d^*\}.$$

Since $\mathcal{M}(X(b^*)) = N-1$ and $X(b^*)$ is a trace of a complete type, we get that $\mathcal{M}(p'') = N-1$ and for every $b^* \models q_d^*$, $X(b^*) \cap [\delta(x,d_0)]$ has non-empty interior in $\mathrm{Tr}_A(p'')$. Just take any $p^* \in S_{p,nf}(Ab^*d)$ with $\mathcal{M}(p^*) = N-1$ and $\mathrm{Tr}_A(p^*) \subseteq X(b^*) \cap [\delta(x,d_0)]$. Necessarily, $\mathrm{Tr}_A(p^*)$ is a clopen subset of both $X(b^*)$ and $\mathrm{Tr}_A(p'')$.

So we find an $E \in FE(A)$ such that for any $b^* \models q_d^*$, for some a with $stp(a/A) \in Tr_A(p'')$ we have

(d)
$$X(b^*) \cap [E(x,a)] = \text{Tr}_A(p'') \cap [E(x,a)].$$

For any $b^* \models q_d^*$ let $X'(b^*)$ be the union of all sets of the form $X(b^*) \cap [E(x,a)]$, for which (d) holds. Extending d_0 a little (inside $dcl(Ad) \subseteq acl(A)$) we can assume that $X'(b^*)$ is Ab^*d_0 -invariant and is the trace of some formula over Abd_0 . So we have that

(e) the set $\{X'(b^*): b^* \models q_d^*\}$ is finite.

Now let $q' = tp(b_0d_0/A)$, let $(b_0d_0)^*$ be the *-finite name for $X'(b_0^*)$ and $(q')^* = tp((b_0d_0)^*/A)$.

Clearly $(b_0d_0)^* \in dcl_A(b_0^*d_0)$, however since $\mathcal{M}(q_d^*) > 0$, by (e) we have $\mathcal{M}(b_0^*d_0/A(b_0d_0)^*) > 0$. It follows that $\mathcal{M}((q')^*) < \mathcal{M}(q^*)$, contradicting the minimality of $\mathcal{M}(q^*)$ and proving Claim 1.

Let $f: \operatorname{Tr}_A(q) \to \operatorname{Tr}_A(q^*)$ be the continuous mapping sending stp(b/A) to $stp(b^*/A)$.

CLAIM 2: $f(\operatorname{Tr}_A(\chi))$ is finite for any formula $\chi(y)$ implying q(y).

Proof: Suppose not. Say, $\chi(y)$ is over a finite set $D \supseteq A$. Since $f(\operatorname{Tr}_A(\chi))$ is infinite and $\mathcal{M}(q^*) = 1$, by Lemma 2.1, $f(\operatorname{Tr}_A(\chi))$ has non-empty interior in $\operatorname{Tr}_A(q^*)$. Wlog $f(\operatorname{Tr}_A(\chi))$ is a clopen D-invariant subset of $\operatorname{Tr}_A(q^*)$. Let $\varphi'(x) = \exists y(\chi(y) \land \varphi(x,y))$. Clearly $\operatorname{Tr}_A(\varphi') = \bigcup \{X(b^*): stp(b^*/A) \in f(\operatorname{Tr}_A(\chi))\}$. Hence finitely many A-conjugates of the set $\operatorname{Tr}_A(\varphi')$ cover $\operatorname{Tr}_A(p)$. It follows that $\operatorname{Tr}_A(\varphi')$ has non-empty interior in $\operatorname{Tr}_A(p)$, contradicting the choice of p.

Now the proof resembles that of [Ne7, theorem 2.4]. We shall construct many countable models of T using just the properties of types q and q^* exhibited in Claims 1 and 2.

Let A' be a finite set containing Ab_0 . By smallness choose types $q_n^* \in S(A')$, $n < \omega$, extending q^* , with $\operatorname{Tr}_A(q_n^*)$ disjoint and open in $\operatorname{Tr}_A(q^*)$. Choose $q_n \in S(A')$ extending q with $f(\operatorname{Tr}_A(q_n)) = \operatorname{Tr}_A(q_n^*)$. Since $\mathcal{M}(q_n) \leq \mathcal{M}(q) < \omega$, there is a number $K < \omega$ such that for infinitely many n, $\mathcal{M}(q_n) = K$; wlog this holds for all $n < \omega$.

Assume further that A' and the types q_n, q_n^* are chosen so that K is minimal possible. We shall find $n_i, i < \omega$, such that for every $j < \omega$,

(f) if b_i , i < j, are A'-independent realizations of q_{n_i} , i < j,, then b_i , i < j, are m-independent over A'.

We proceed by induction on j. Suppose n_0, \ldots, n_{j-1} have been chosen so that (f) holds. We shall choose n_j . Notice that (f) implies that the type

$$p_{n_0}(x_0) \cup \cdots \cup p_{n_{j-1}}(x_{j-1}) \cup \{ x_0, \ldots, x_{j-1} \text{ are } A' \text{-independent} \}$$

has finitely many completions over A', say these are types $tp(c^0/A'), \ldots, tp(c^{k-1}/A')$, where $c^t = \langle c_0^t, \ldots, c_{i-1}^t \rangle$ for some $c_i^t \models p_{n_i}$.

To be able to choose n_j it is enough to show that

(g) for every t < k, for at most finitely many $n < \omega$ there is b_n realizing q_n with $b_n \downarrow c^t(A')$ and $b_n \not \downarrow c^t(A')$.

Suppose this is not true for some t < k. Let

$$I = \{n < \omega : \text{ for some } b_n \models q_n, \ b_n \downarrow c^t(A') \text{ and } b_n \not \downarrow c^t(A') \}.$$

So I is infinite. For $n \in I$ let $q'_n = tp(b_n/A'c^t)$, $(q'_n)^* = tp(b_n^*/A'c^t)$ and since $b_n \mathcal{C}^t(A')$, we can assume that for some K' < K, for all $n \in I$, $\mathcal{M}(q'_n) = K'$.

By the minimality of K, for almost all $n \in I$, $\operatorname{Tr}_A((q'_n)^*)$ is a finite subset of $\operatorname{Tr}_A(q_n^*) \subseteq \operatorname{Tr}_A(q^*)$. We see that the set $\{stp(c^*/A): c^* \models q^* \text{ and } c^* \mathcal{L}A'c^t(A)\}$ is infinite, contradicting Lemma 2.1. This proves (g).

Now let $b_i, i < \omega$, be A'-independent realizations of types $q_{n_i}, i < \omega$. By (f), $b_i, i < \omega$, are m-independent over A' (that is, every finite number of them is m-independent over A'). Also, for every $j < \omega$ we have

(h) q_{n_i} is non-isolated over $A'' = A' \cup \{b_i, i \neq j\}$.

Indeed, suppose not. Then there is a formula $\chi(y)$ over a finite subset D of A'' (containing A'), which isolates q_{n_j} . Wlog $\chi(y)$ isolates a type $q' \in S(D)$. So for some non-forking extension $q'' \in S(D)$ of q_{n_j} we have

$$\operatorname{Tr}_A(q'') = \operatorname{Tr}_A(q') = \operatorname{Tr}_A(\chi) \subseteq \operatorname{Tr}_A(q_{n_j}).$$

By (f), for $b'' \models q''$ we have $b'' \ D(A')$, so $\operatorname{Tr}_A(q'')$ is an open subset of $\operatorname{Tr}_A(q_{n_j})$. By Claim 2, $f(\operatorname{Tr}_A(\chi)) = f(\operatorname{Tr}_A(q''))$ is finite. So also $f(\operatorname{Tr}_A(q_{n_j})) = \operatorname{Tr}(q_{n_j}^*)$ is finite (as $\operatorname{Tr}_A(q_{n_j})$ is a finite union of A'-conjugates of $\operatorname{Tr}_A(q'')$), contradicting the choice of $q_n^*, n < \omega$, and proving (h). (In fact, f is an open surjection, as in [Ne5, theorem 0.3].)

By (h), for each set $J \subseteq \omega$ we can construct a countable model M of T containing A' and realizing q_{n_i} iff $i \in J$. This shows that T has many countable models, proving the theorem.

Recall that $\varphi(x,y)$ is weakly normal if for every a, the set $\{\varphi(\mathfrak{C},b)\colon \varphi(a,b)$ holds} is finite. In case when T is 1-based we can improve Theorem 2.2.

THEOREM 2.3: Assume T is 1-based, superstable, with few countbale models, B is finite and $a \downarrow B$. Then there is a weakly normal formula $\psi(x)$ such that $\text{Tr}(\psi)$ is an open subset of Tr(a/B).

Proof: Theorem 2.2 yields a formula $\psi(x,b)$ with $\text{Tr}(\psi)$ being an open subset of Tr(a/B). By [HP], ψ is a Boolean combination of weakly normal formulas. Possibly diminishing $\psi(\mathfrak{C})$ we can assume that $\psi(x,b)$ is equivalent to $\chi_0(x,b) \wedge \neg \chi_1(x,b) \wedge \cdots \wedge \neg \chi_k(x,b)$, where χ_0,\ldots,χ_k are some weakly normal formulas and k is minimal possible. Suppose for a contradiction that k>0.

Let $Y = \text{Tr}(\psi(x, b))$ and, for $I \subseteq \{1, ..., k\}$, let

$$X_I = \operatorname{Tr}(\chi_0(x,b) \wedge \bigwedge_{i \in I} \neg \chi_i(x,b)).$$

CASE 1: For some proper subset I of $\{1, \ldots, k\}$, Y is not nowhere dense in X_I . Whog $r = stp(a) \in int_{X_I}(Y)$. So choose $E \in FE(\emptyset)$ with $Y \cap [E(x, a)] = X_I \cap [E(x, a)]$, and we can replace $\psi(x, b)$ by $(\chi_0(x, b) \wedge x \in a/E) \wedge \bigwedge_{i \in I} \neg \chi_i(x, b)$, contradicting the minimality of k.

CASE 2: For every proper subset I of $\{1, \ldots, k\}$, Y is nowhere dense in X_I . In this case we will show that $\psi(x,b)$ is (equivalent to) a weakly normal formula. Suppose not. Then there are $b_n, n < \omega$, such that $b = b_0$, $b \equiv b_n$, for some a', for all n, $\psi(a', b_n)$ holds and $\psi(x, b_n)$, $n < \omega$, are pairwise non-equivalent.

We will find infinite sets $\omega \supseteq I_0 \supseteq I_1 \supseteq \cdots \supseteq I_k$ and permutation $n_0 = 0, n_1, \ldots, n_k$ of $\{0, 1, \ldots, k\}$ such that for every $n, n' \in I_t$, for every $j \le t$, $\chi_{n_j}(x, b_n)$ and $\chi_{n_j}(x, b_{n'})$ are equivalent. In particular, for every $n, n' \in I_k$, $\psi(x, b_n)$ and $\psi(x, b_{n'})$ will be equivalent, a contradiction.

Suppose t < k and we have found I_t and n_0, \ldots, n_t ; we shall find I_{t+1} and n_{t+1} . Let $n \in I_t$, $J = \{n_1, \ldots, n_t\}$, $Z_J = \text{Tr}(\chi_0(x, b_n) \land \bigwedge_{1 < j \le t} \neg \chi_{n_j}(x, b_n))$ and $Y_n = \text{Tr}(\psi(x, b_n))$. Since $b_n \equiv b$, by the assumption of case 2 and by the inductive hypothesis, Z_J does not depend on the choice of $n \in I_t$ and for every $n \in I_t$,

(a) Y_n is nowhere dense in Z_J .

Let $Z_n = Z_J \setminus Y_n$. We see that

(b)
$$Z_n = \{r \in Z_J: r(\mathfrak{C}) \cap \chi_0(\mathfrak{C}, b_n) \subseteq \bigcup_{j>0} \chi_j(\mathfrak{C}, b_n)\}.$$

By (a) we can choose $r'' \in \bigcap_{n \in I_t} Z_n$, in particular $r'' \in Z_J$. Let $a'' \in r''(\mathfrak{C})$ realize $\chi_0(x,b_n) \wedge \bigwedge_{1 < j \le t} \neg \chi_{n_j}(x,b_n)$ for every $n \in I_t$. By (b), for every $n \in I_t$ there is $j_n > 0$ such that $a'' \in \chi_{j_n}(\mathfrak{C},b_n)$, clearly $j_n \ne n_1, \ldots, n_t$.

By pigeonhole rule for some n_{t+1} there are infinitely many $n \in I_t$ with $j_n = n_{t+1}$. Let $I_{t+1} = \{n \in I_t : j_n = n_{t+1}\}$. Clearly this works.

Notice that the proof of this theorem shows that if additionally T = Th(G) for some group G, then the formula $\psi(x)$ may be taken as a coset of an $acl(\emptyset)$ -definable subgroup of G.

COROLLARY 2.4: A 1-based superstable theory with few countable models is m-normal.

Proof: Suppose $A \subseteq B$ are finite, $a \downarrow B(A)$, wlog $A = \emptyset$ and let $\varphi(x,b)$ be a weakly normal formula with $\text{Tr}(\varphi(x,b))$ being an open subset of Tr(a/B). Wlog $\varphi(a,b)$ holds. So $\text{Tr}(\varphi(x,b)) \cap [E(x,a)] = \text{Tr}(a/B) \cap [E(x,a)]$ for some $E \in FE(\emptyset)$. Clearly, $\text{Tr}(\varphi(x,b)) \cap [E(x,a)]$ has finitely many conjugates over a.

PROBLEM: Find a small superstable theory which is not m-normal.

QUESTION: Is any superstable theory with few countable models m-normal?

The forthcoming paper [Ne8] contains some results suggesting a positive answer to this question. We say that forking is meager on $p \in S(A)$ if for every formula φ forking over A, $\operatorname{Tr}_A(\varphi) \cap \operatorname{Tr}_A(p)$ is nowhere dense in $\operatorname{Tr}_A(p)$. The next corollary improves [Ne7, corollary 2.7(1)], since here we do not assume that p is regular. In fact, this corollary is a restatement of Theorem 2.2.

COROLLARY 2.5: Assume T is a superstable theory with few countable models, $p \in S(A)$ for some finite $A \subseteq \mathfrak{C}$ and forking is meager on p. Then p is isolated.

Proof: By Theorem 2.2 there is a formula $\varphi(x)$ with $\operatorname{Tr}_A(\varphi)$ being an open subset of $\operatorname{Tr}_A(p)$. Since forking is meager on p, φ does not fork over A, hence by the open mapping theorem $\operatorname{Tr}_A(\varphi)$ has non-empty interior in S(acl(A)). It follows that $\operatorname{Tr}_A(p)$ is open in S(acl(A)), hence p is isolated.

3. Generic subgroups of type-definable groups

The examples from the introduction have one feature that we have not explored in the previous section: they are groups. \mathcal{M} -rank on generic types of a group has some additional properties worth mentioning. We deal with them in this section.

First we recall some basic notions. We assume $G = (G, \cdot, ...)$ is a type-definable over \emptyset group in \mathfrak{C} . So G(x) is a type over \emptyset . $\mathcal{G} \subset S(acl(\emptyset))$ is the set of generic types of G. For any set $A, S_{gen}(A) = \{tp(a/A): a \in G \text{ is generic over } A\}$. We say that a type-definable group $H \leq G$ is generic if $G^0 \leq H$. If a generic subgroup H of G is type-definable over some B, then we can consider gen(H), the set of

generic types of H, as a closed subset of both S(acl(B)) and of \mathcal{G} . If P is a closed subset of S(acl(A)) for some finite A then we define $\mathcal{M}(P)$ as the supremum of $\mathcal{M}(p)$, where $p \in S(B)$ for some finite $B \supset A$, p does not fork over A and $\mathrm{Tr}_A(p) \subset P$.

Following [Ne2], for $p, q \in S(acl(\emptyset)) \cap [G(x)], p*q = stp(a \cdot b)$, where a, b are independent realizations of p, q respectively. For sets $X, Y \subseteq S(acl(\emptyset)) \cap [G(x)]$ we define X*Y as the set $\{p*q\colon p\in X, q\in Y\}$ (that is, the complex product of X, Y). In [Ne2] we prove that * is continuous on $S(acl(\emptyset))\cap [G(x)]$ coordinatewise. Unfortunately, in general it is not continuous as a binary function. Below we prove however that * restricted to $\mathcal{G}\times \mathcal{G}$ is continuous. Although this result is not used elsewhere in this paper, we include it here, as it clarifies the picture obtained in [Ne2].

Recall that for a stationary type p,Cb(p) is the definable closure of the set of parameters $a_{\varphi}(p)$ of canonical φ -definitions δ_{φ} of p. That is, for any $\varphi(x;y)$ and $c \in \mathfrak{C}$ we have $\varphi(x;c) \in p|c$ iff $\delta_{\varphi}(c;a_{\varphi}(p))$ holds. In [Ne2, Ne6] we consider the strong topology on $S(acl(\emptyset))$ generated by the basis of open sets $X_{\varphi,c} = \{p \in S(acl(\emptyset)): a_{\varphi}(p) = c\}, \varphi \in L, c \in acl(\emptyset).$

LEMMA 3.1: * is continuous as a binary function (in the strong topology).

Proof: Let $p, q \in S(acl(\emptyset)) \cap [G(x)]$ and $\varphi(z;t) \in L$. For any $d \in \mathfrak{C}$ we have (in the Hrushovski's notation):

$$\varphi(z,d) \in (p*q)|d \text{ iff } ((d_qy)\varphi(x\cdot y,d)) \in (p|d)(x) \text{ iff } (d_px)(d_qy)\varphi(x\cdot y,d) \text{ holds}.$$

In other words,

$$\varphi(z,d) \in (p*q)|d \text{ iff } \delta_{\varphi'}(x,d;a_{\varphi'}(q)) \in (p|d)(x) \text{ iff } \delta_{\varphi''}(d,a_{\varphi'}(q),a_{\varphi''}(p)) \text{ holds,}$$

where $\varphi'(y; x, t) = \varphi(x \cdot y, t)$ (y is the 'free' variable in φ' ; x, z are the 'parameter' variables there), and $\varphi''(x; t, y) = \delta_{\varphi'}(x, t; y)$.

Hence $\delta_{\varphi''}(t, a_{\varphi'}(q); a_{\varphi''}(p))$ defines $(p * q)|\varphi$. Consequently,

$$a_{\varphi}(p*q)\in dcl(a_{\varphi'}(q),a_{\varphi''}(p)).$$

Let $c = a_{\varphi}(p * q), c' = a_{\varphi'}(q)$ and $c'' = a_{\varphi''}(p)$. We see that whenever $(p', q') \in X_{\varphi'',c''} \times X_{\varphi',c'}$ then $p' * q' \in X_{\varphi,c}$. This proves the lemma.

COROLLARY 3.2: * is continuous on $\mathcal{G} \times \mathcal{G}$ (in the usual topology). In particular, if $P \subset \mathcal{G}$ is closed then P * P is closed.

Proof: As in [Ne6, lemma 2.2] one can prove that on \mathcal{G} , the usual topology and the strong topology coincide. This is essentially because all generic types have maximal local ranks, and for every finite set Δ of formulas invariant under translation, $\mathcal{G}|\Delta$ is finite. The last clause follows since the continuous image P*P of the compact set $P\times P$ must be compact.

As in [Ne2], for any $P \subset S(acl(\emptyset)) \cap [G(x)], \langle P \rangle$ denotes the minimal type-definable (necessarily over $acl(\emptyset)$) subgroup H of G such that $P(\mathfrak{C}) \subset H$. p^n denotes $p * \cdots * p$ (n times) and P^n denotes $P * \cdots * P$ (n times). Recall that we say that P is A-invariant if for every $f \in Aut(\mathfrak{C}/A)$, f(P) = P. We see that P is A-inariant iff there is a set $P' \subset S(A) \cap [G]$ such that $P = \bigcup \{ \operatorname{Tr}(r) \colon r \in P' \}$. Using the smallness of T we can prove the following variant of [Ne2, theorem 2.3].

THEOREM 3.3: Assume A is finite and $P \subset \mathcal{G}$ is A-invariant. Then for some $p \in S_{gen}(A)$, Tr(p) is an open subset of $gen(\langle P \rangle)$ and for some n, $gen(\langle P \rangle) = \bigcup_{i \leq n} P^i$.

Proof: Let $P'=cl(\bigcup_{i<\omega}P^i)$. By [Ne2, theorem 2.3], P' is the set of generic types of $\langle P \rangle$. Clearly, P^i and P' are A-invariant. Since P' is closed and T is small, for some $r \in S_{gen}(A)$, $\operatorname{Tr}(r)$ is an open subset of P' (this is like in Lemma 0.1(8)). As each P^i is A-invariant, if $\operatorname{Tr}(r)$ meets some P^i , then it is contained in this P^i . As P' is compact and metrizable, there are finitely many $r_0, \ldots, r_{n-1} \in \bigcup_{i<\omega}P^i$ such that $P' = \bigcup_{i< n} r_i * \operatorname{Tr}(r)$. Hence for some $n, P' = \bigcup_{i< n} P^i$.

Assume H is a generic subgroup of G, type-definable over a finite set A. Then regarded as a subset of $\mathcal{G}, gen(H)$ is A-invariant, and we define $\mathcal{M}(H)$ as $\mathcal{M}(gen(H))$. Referring to the examples from the introduction, we see that $\mathcal{M}(G_N) = N$ and $\mathcal{M}(G_\infty) = \infty$. Recall in our context the following lemma from [Ne7] ((4) follows from the additivity of \mathcal{M} -rank).

LEMMA 3.4: Assume A is finite and $X, Y \subset \mathcal{G}$ are closed and A-invariant.

- (1) For any $p \in \mathcal{G}$, $\mathcal{M}(p * X) = \mathcal{M}(X)$.
- (2) $\mathcal{M}(X \cup Y) = max(\mathcal{M}(X), \mathcal{M}(Y)).$
- (3) If H is a generic subgroup of G type-definable over A and Z is an open subset of gen(H), then $\mathcal{M}(Z) = \mathcal{M}(H)$.
- (4) $\mathcal{M}(X * Y) \leq \mathcal{M}(X) \oplus \mathcal{M}(Y)$.

We do not know any example of a small superstable theory which is not m-normal; the more so we do not know any group G for which the \mathcal{M} -gap conjecture is false. Still, if a group like this exists, the smallness imposes some restrictions on generic subgroups of G.

308 L. NEWELSKI Isr. J. Math.

PROPOSITION 3.5: Assume A is finite and α is an ordinal or ∞ . Then there is a unique type-definable over A generic subgroup $G_{\alpha,A}$ of G such that $\mathcal{M}(G_{\alpha,A}) < \omega^{\alpha}$ and for every $p \in S_{gen}(A)$ with $\mathcal{M}(p) < \omega^{\alpha}$, $\operatorname{Tr}(p) \subset \operatorname{gen}(G_{\alpha,A})$.

Proof: Let $P = \bigcup \{ \operatorname{Tr}(p) : p \in S_{gen}(A) \text{ and } \mathcal{M}(p) < \omega^{\alpha} \}$ and let $G_{\alpha,A} = \langle P \rangle$. By Lemma 3.4, for every $p \in S_{gen}(A)$ with $\operatorname{Tr}(p) \subset P^i$, $\mathcal{M}(p) < \omega^{\alpha}$, hence $\operatorname{Tr}(p) \subset P$. So P * P = P and $P = gen(G_{\alpha,A})$. By Theorem 3.3 we find a single $p \in S_{gen}(A)$ with $\operatorname{Tr}(p)$ open in $gen(G_{\alpha,A})$. By Lemma 3.4(3), $\mathcal{M}(G_{\alpha,A}) = \mathcal{M}(p) < \omega^{\alpha}$.

We call the group $G_{\alpha,A}$ from Proposition 3.5 the generic α -component of G over A (this resembles [BL]). Notice that $G_{0,A}$ has finitely many generic types, that is it is connected-by-finite. Hence there are finitely many types $p \in S_{gen}(A)$ of finite multiplicity. Essentially this generalizes [Ne1, lemma 0.2] and [Bu2].

COROLLARY 3.6: The sequence $G_{\alpha,A}, \alpha \in Ord \cup \{\infty\}$ is non-decreasing, and has finitely many members.

Proof: The first assertion is immediate. Suppose $\alpha_0 < \alpha_1 < \cdots < \alpha_n < \cdots, n < \omega$, and $G_{\alpha_0,A} \neq G_{\alpha_1,A} \neq \cdots$. Let $\mathcal{G}_i \subset \mathcal{G}$ be $gen(G_{\alpha_i,A})$. We see that $\mathcal{M}(\mathcal{G}_0) < \mathcal{M}(\mathcal{G}_1) < \cdots$. Consider $H = \langle \bigcup_{n < \omega} \mathcal{G}_n \rangle$. By Theorem 3.3, for some $p \in S_{gen}(A)$, $\operatorname{Tr}(p)$ is open in gen(H). Hence by Lemma 3.4(3), $\mathcal{M}(p) = \mathcal{M}(H)$. On the other hand, $\operatorname{Tr}(p)$ meets some \mathcal{G}_n , hence $\operatorname{Tr}(p) \subset \mathcal{G}_n$ (as \mathcal{G}_n is A-invariant). Thus $\mathcal{M}(p) \leq \mathcal{M}(\mathcal{G}_n) < \mathcal{M}(\mathcal{G}_{n+1}) \leq \mathcal{M}(H) = \mathcal{M}(p)$, a contradiction.

More generally one can prove that the set $\{\alpha: \alpha \text{ is the exponent of the leading term of } \mathcal{M}(H)$ for some type-definable over A subgroup H of $G\}$ is finite. For instance, if G is G_{∞} from the introduction, then for any finite $A, G_{\infty,A} = G_{0,A}$. The most promising candidate for a counterexample to the \mathcal{M} -gap conjecture seems an expansion by constants (algebraic over \emptyset) of some weakly minimal group G, and the main obstacle is preservation of smallness. Proposition 3.5 and Corollary 3.6 indicate that any attempt to find, say, a weakly minimal group G being a counterexample to the \mathcal{M} -gap conjecture would still have to deal with some generic subgroups of G. On the other hand (in order to avoid m-normality), in such a G there would have to be a generic type P over some finite set, with trace not being a Boolean combination of *-translations of traces of generic type-definable over \emptyset subgroups of G.

We will conclude this paper comparing "measure and category in superstable theories". One can define a notion of independence intermediate between m-independence and forking independence. This is done essentially in [LS]. Specifically, suppose A is a finite set of parameters and $p \in S(A)$. We can define probabilistic Haar measure μ_p on S(acl(A)) concentrated on $\text{Tr}_A(p)$, such

that for any $E \in FE(A)$ and a realizing p, $\mu_p(\operatorname{Tr}_A(p) \cap [E(x,a)]) = 1/n$, where n is the number of E-classes on $p(\mathfrak{C})$; $\mu_p(S(acl(A)) \setminus \operatorname{Tr}_A(p)) = 0$.

Let $\mu_A = \sum_{p \in S(A)} \mu_p$. We define μ -independence (μ stands for measure) as follows.

For any finite a, b,

$$a \stackrel{\mu}{\downarrow} b(A)$$
 iff $a \downarrow b(A)$ and $\mu_A(\operatorname{Tr}_A(a/Ab)) > 0$.

Since any open subset of $\operatorname{Tr}_A(p)$ (where $p \in S(A)$) has positive measure, we have that

$$^{\prime\prime} \downarrow \Rightarrow ^{\prime\prime} \downarrow \Rightarrow \downarrow.$$

Also, just as in case of $\ ^m\$ and $\ ^m\$ we have that $\ ^m\$ is symmetric and transitive [LS, lemmas 2.2, 2.4]. Also, since $\ ^m\$ implies $\ ^m\$, extension property for $\ ^m\$ (Lemma 0.1(7)) implies extension property for $\ ^m\$.

However, the next proposition and corollary, proved by Predrag Tanovic, show that in some important cases m-independence and μ -independence coincide.

PROPOSITION 3.7 (Predrag Tanovic): If T is small, stable and m-stable then μ -independence equals m-independence.

Proof: If not, then for some finite A and $p \in S(A)$, for some b and $q = q(x, b) \in S(Ab)$, which is a non-forking extension of p, we have that $\mu_p(\operatorname{Tr}_A(q)) = \alpha > 0$ and $\operatorname{Tr}_A(q)$ is nowhere dense in $\operatorname{Tr}_A(p)$. We can choose q so as to minimize $\mathcal{M}(q)$.

For $b' \equiv b(A)$ let q(x,b') be the A-conjugate of q(x,b). If additionally $b \downarrow^m b'(A)$ then

(a)
$$\operatorname{Tr}_A(q(x,b)) \cap \operatorname{Tr}_A(q(x,b'))$$
 is nowhere dense in $\operatorname{Tr}_A(q(x,b'))$.

Indeed, otherwise $\operatorname{Tr}_A(q(x,b)) \cap \operatorname{Tr}_A(q(x,b'))$ has non-empty interior in $\operatorname{Tr}_A(q(x,b'))$, so for some a realizing $q(x,b) \cup q(x,b')$ we have $a \stackrel{\text{\tiny "}}{\bigcup} b(Ab')$. $b \stackrel{\text{\tiny "}}{\bigcup} b'(A)$ and transitivity of m-independence give $a \stackrel{\text{\tiny "}}{\bigcup} b(A)$, contradicting that $\operatorname{Tr}_A(q)$ is nowhere dense in $\operatorname{Tr}_A(p)$.

It follows that for every $r \in S(Abb')$ which is a non-forking extension of $q(x,b) \cup q(x,b')$, we have $\mathcal{M}(r) < \mathcal{M}(q)$, so by the minimality of \mathcal{M} -rank of q, $\mu_p(\operatorname{Tr}_A(r)) = 0$. Hence also

(b)
$$\mu_p(\operatorname{Tr}_A(q(x,b)) \cap \operatorname{Tr}_A(q(x,b'))) = 0.$$

Now let $b_n, n < \omega$, be m-independent over A, with $b_n \equiv b(A)$. By (b) we see that $\text{Tr}_A(q(x,b_n)), n < \omega$, is a family of measure-disjoint subsets of $\text{Tr}_A(p)$, of measure $\alpha > 0$, a contradiction.

Since any superstable theory with few countable models is m-stable we get the following corollary.

COROLLARY 3.8: If T is superstable with few countable models then m-independence equals μ -independence.

The example from Section 0 shows that not all m-normal theories are m-stable. However for such theories μ -independence also equals m-independence.

Proposition 3.9: If T is small, stable and m-normal, then μ -independence equals m-independence.

Proof: If not, choose p,q as in the proof of Proposition 3.7 (without minimizing $\mathcal{M}(q)$). Let a realize q. By Remark 0.2 choose $c \in acl(A)$ such that $X = \mathrm{Tr}_A(a/Abc)$ is $Aut(\mathfrak{C}/Aca)$ -invariant. Since μ_p is $Aut(\mathfrak{C}/A)$ -invariant and X is open in $\mathrm{Tr}_A(q)$, we have that $\alpha = \mu_p(X) > 0$. Similarly, letting Y denote $\mathrm{Tr}_A(a/Ac)$, we have that Y is open in $\mathrm{Tr}_A(p)$ and X is nowhere dense in Y. Notice that

(a) whenever $a' \equiv a(Ac)$ and X' is the corresponding conjugate of X over Ac then X' is $Aut(\mathfrak{C}/Aca')$ -invariant.

Since $X = \text{Tr}_A(a/Abc)$, we have also that

(b) whenever $stp(a'/A) \in X$, then X is $Aut(\mathfrak{C}/Aca')$ -invariant and a and a' are conjugate over $Ac\{X\}$.

Let \mathcal{X} be the family of all conjugates of X over Ac. We see that \mathcal{X} is an infinite family of closed nowhere dense sets of measure α covering Y. By (a) and (b) all sets in \mathcal{X} are pairwise disjoint, a contradiction.

Added in proof: Recently I proved that any superstable theory with few countable models is m-normal, answering positively a question from Section 2.

References

- [Ba] J. T. Baldwin, Fundamentals of Stability Theory, Springer, Berlin, 1988.
- [BL] Ch. Berline and D. Lascar, Superstable groups, Annals of Pure and Applied Logic 30 (1986), 1–45.
- [Bu1] S. Buechler, The classification of small weakly minimal sets I, in Classification Theory, Chicago 1985, Proceedings (J. T. Baldwin, ed.), Springer, Berlin, 1987, pp. 32–71.

- [Bu2] S. Buechler, Classification of small w.m. sets II, Journal of Symbolic Logic 53 (1988), 625–635.
- [HP] E. Hrushovski and A. Pillay, Weakly normal groups, in Logic Colloquium '85 (The Paris Logic Group, ed.), North-Holland, Amsterdam, 1987, pp. 233–244.
- [LS] M. C. Laskowski and S. Shelah, Forcing isomorphism II, Journal of Symbolic Logic 61 (1996), 1305–1320.
- [M] M. Makkai, A survey of basic stability theory, with particular emphasis on orthogonality and regular types, Israel Journal of Mathematics 49 (1984), 181– 238.
- [Ne1] L. Newelski, A proof of Saffe's conjecture, Fundamenta Mathematicae 134 (1990), 143–155.
- [Ne2] L. Newelski, On type definable subgroups of a stable group, Notre Dame Journal of Formal Logic **32** (1991), 173–187.
- [Ne3] L. Newelski, A model and its subset, Journal of Symbolic Logic 57 (1992), 644–658.
- [Ne4] L. Newelski, Meager forking, Annals of Pure and Applied Logic 70 (1994), 141–175.
- [Ne5] L. Newelski, \mathcal{M} -rank and meager types, Fundamenta Mathematicae **146** (1995), 121–139.
- [Ne6] L. Newelski, On atomic or saturated sets, Journal of Symbolic Logic 61 (1996), 318–333.
- [Ne7] L. Newelski, M-rank and meager groups, Fundamenta Mathematicae 150 (1996), 149-171.
- [Ne8] L. Newelski, Geometry of *-finite types, Journal of Symbolic Logic, to appear.
- [Sh] S. Shelah, Classification Theory, 2nd edition, North-Holland, Amsterdam, 1990.
- [SHM] S. Shelah, L. Harington and M. Makkai, A proof of Vaught's conjecture for ω-stable theories, Israel Journal of Mathematics 49 (1984), 259–278.